NUTRITIVE VALUE OF *CHICOREUS RAMOSUS*: A STATUS REPORT

By M. Xavier Ramesh and K. Ayyakkannu

CAS in Marine Biology, Annamalai University, INDIA

The demand for protein rich food is increasing day by day especially in developing countries with raising growth of the human population. This demand has stimulated exploration of underutilized or non-traditional resources. Of the innumerable resources, the marine finfishes occupy an important place in man's diet followed by crustaceans, and molluscs to a much smaller extent. Utilization of edible gastropods is very limited and restricted to poor, coastal people, though snails are delicious and nutrient rich. In general, the marine gastropods remain under-exploited in many parts of India. The limited utilization is mainly due to conservative food habits of our people and lack of knowledge of the nutritive value. Hence, the muricid gastropod *Chicoreus ramosus* has been analysed to get information on its biochemical composition and assess its nutritive value. The meat of this gastropod, would form a good substitute to other, more expensive protein rich food sources.

*C. ramosus* is the largest sized species among the muricids. It grows to a size of about one foot in length. Previously it was mainly exploited for its shell and operculum, but the meat, which constitutes about 25% of the total weight was ignored. In order to create an awareness about the food value of the soft parts, biochemical studies were carried out and the results are interesting. Though, the biochemical contents of different body parts viz., foot, mantle, gill, digestive gland and gonad were worked out, only the biochemical value of the foot is emphasized in this report. The foot is the only suitable part for consumption. The foot muscle constitutes about 45 to 50% of the total meat weight of the *C. ramosus*.

The biochemical composition of the oven dried (50°C) foot muscle of *C. ramosus* is as follows: Moisture-30%; Protein-36%; Lipid-2%; Carbohydrate-16%; Total free sugars-7%; Glycogen-8% and Total Nitrogen-5.5%.

At present, the *C. ramosus* foot muscle is exported from Gulf of Mannar and some parts of Coromandel coast of India to Southeast Asian Countries. Further studies are in progress of the following aspects;
1. Seasonal variation in the biochemical composition of the soft parts;
2. Processing and assessing the shelf life period of *C. ramosus* meat;
3. Assessing and comparing the quality of various types of processed meat, and preparing a recipe based on the disintegration of enzymes and proteins during cooking.