GUT MICROFLORA OF CHICOREUS RAMOSUS: A STATUS REPORT

by T. Rajakumar and K. Ayyakkannu
CAS in Marine Biology, Annamalai University, India

In general, guts of aquatic animals may be intermittently or permanently populated by many groups of micro-organisms, that could be beneficial or pathogenic depending on their influence. Bacteria play a very important role in the host's digestive processes, growth and disease susceptibility. According to reports by WHO [No.398, 1968], seafood plays an important role in the transmission of diseases. Therefore, a thorough understanding on the presence and the role of the bacterial flora of molluscs is essential to detect the potential pathogens and to improve the quality of seafood.

In the present study, the total aerobic heterotrophic bacterial count (THB) of the different gut regions of Chicoreus ramosus collected from Cuddalore, Mandapam and Tuticorin sectors varied from 13x10^3 (Cuddalore) to 36x10^4 CFU/g of gut sample (Mandapam). The gelatin utilising bacterial population fluctuated from 55x10^2 (Mandapam) to 81x10^3 CFU/g (Tuticorin). Starch hydrolysing bacteria ranged from 4x10^3 (Cuddalore) to 85x10^3 CFU/g (Mandapam). The lipolytic bacterial population varied between 86x10^2 (Mandapam) and 72x10^3 CFU/g (Mandapam). Among the 3 different gut regions of C. ramosus, the highest bacterial numbers were recorded in the hind gut regions followed by fore gut, while the minimum count was recorded from the mid gut. The bacterial forms Micrococcus, Corynebacterium, Bacillus, Flavobacterium/Cytophaga gp., Vibrio, Pseudomonas, Aeromonas, Achromobacter and Enterobacteriacea were commonly encountered. Among these the gram positive Micrococcus was found to be dominant. Proteolytic, amylolytic and lipolytic bacterial strains were observed in the mid gut region of C. ramosus in higher numbers than in fore gut and hind gut. Micrococcus and Corynebacterium were found to be the dominant forms, which could have contributed more to hydrolysis of protein, carbohydrate and fat in all the three regions of the digestive tract. The present study reveals the presence of very low numbers of pathogenic bacterial genera like Vibrio and Pseudomonas. Further studies will hopefully reveal the seasonality and the pathogenicity of bacterial forms harbouréd in this snail.

REFERENCE