COMPARATIVE GROWTH AND SURVIVAL OF HATCHERY PRODUCED
CRASSOSTREA BELCHERI SEEDS AT A MARINE AND AN ESTUARINE SITE
IN MALAYSIA

By Shau-Hwai Tan* and Tat-Meng Wong
1. Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
2. Open Learning Institute of Hong Kong, 9/13 Trade Department Tower, 700 Nathan Road, Kowloon, Hong Kong

ABSTRACT

Hatchery produced seeds of the tropical oyster *Crassostrea belcheri* which were either set on marble chips (spats) or free (culchless) were grown using, suspended tray culture for 18 months at Maka Head, Penang (salinity: 28-32 pp) and at Batu Lintang, Kedah (salinity: 15-25 pp). During the first 12 months growth of culchless seeds and spats was significantly higher (P<0.05) at Maka Head, with mean shell height reaching 6 cm compared to 3.5 cm at Batu Lintang. However, differences in shell height narrowed during subsequent months. By the 18th month the mean shell height of spats and culchless seeds at both sites had all reached between 7.30-7.63 cm. Overall, *Crassostrea belcheri* survived better at Batu Lintang (12.4%) compared to Maka Head (2.0%). The implications of these results on site selection for mass culture are discussed.

INTRODUCTION

Crassostrea belcheri (Sowerby) is a large tropical oyster that is extensively cultured in Thailand (Saraya, 1982). The same species also occurs in parts of Malasia where it forms important local fisheries. Since the late 1960’s studies have been undertaken to culture *C. belcheri* with the objective of increasing production as well as enhancing the income of the fisherfolk. Current production is still mainly based on the harvest of natural stocks although small scale culture operations have been hampered by limited seed supply and is unlikely to take place until sufficient seeds can be supplied from both natural and hatchery sources. Although hatchery seed production has gone through the research to the pilot production phase in Malaysia as well as Thailand, serious concerns remain as to the performance of hatchery produced seeds under different field conditions. This paper reports on the growth and survival of hatchery produced *C. belcheri* seeds at a marine site (Maka Head, Penang) and an estuarian site (Batu Lintang, Kedah) in Malaysia.

MATERIALS AND METHODS

Eyed larvae of *C. belcheri* were set on marble chips or PVC plates. Those set on PVC plates were scraped off with a razor blade 24 hours after setting to produce culchless seeds. Both types of spats were subsequently held in a nursery for approximately two months before being used for growout studies. For each site, three replicates of each type of seeds (culchless and set on marble chips) were monitored. For each replicate, 500 culchless seeds (mean shell height 0.8 cm) or 500 seeds set on marble chips (mean shell height 1.3 cm) were initially kept in 3 mm mesh nylon bags measuring approximately 15 cm x 30 cm. These small bags were held inside a 1.2 cm mesh nylon tray for further protection, and suspended approximately 1 metre below the water surface. At regular intervals, the nets as well as oysters were cleared of biofouling organisms. Measurements of growth and survival were carried out every 3-4 weeks for 18 months. All oysters in each bag were counted to determine survival rates throughout the
study. At each sampling, growth was monitored by measuring the shell height of 100 randomly picked animals.

Two months after the experiment was initiated, when the shell height exceeded 1.5 cm, the oysters were transferred into 10 cm mesh Nylon trays to prevent overcrowding. At the end of the experiment, all surviving oysters in each bag were counted and measured.

Data was analyzed with a one-way ANOVA to compare the growth and survival of oysters at different culture sites. If significant interactions were present, the data were then subjected to the Dunnet’s Multiple Range Test to determine which treatments were significantly different.

RESULTS

Fig. 1 summarizes the growth and survival of Crassostrea chione seeds at Muka Head and Batu Lintang. During the first month, no significant difference (p>0.05) in growth was noted for seeds set on marble chips between the two sites. However, growth of culchless seeds was significantly higher (p<0.05) at Muka Head. From then onwards until the twelfth month, both culchless seeds and seeds set on marble chips showed a steady increase in shell height with age.

Figure 1: Growth and survival of hatchery produced culchless seeds and spat set on marble chips, of Crassostrea chione at Muka Head and Batu Lintang.
chips showed significantly better growth (p<0.05) at Muka Head than at Batu Lintang. The mean shell height of the oysters was not significantly different (p>0.05) between sites after 12 months. After 18 months, the mean shell heights for cultchless seeds were 7.30 ± 1.51 cm at Muka Head and 7.63 ± 1.32 cm at Batu Lintang, whereas the mean shell heights for seeds set on marble chips were 7.49 ± 0.97 cm at Muka Head and 7.32 ± 1.36 cm at Batu Lintang. At each site, there were no significant differences in growth between cultchless seeds and seeds set on marble chips. High mortality was observed at Muka Head for all the replicates from the second to the fourth month which coincided with the wet season. The same trend was seen at Batu Lintang for cultchless seeds. Survival remained constant thereafter. At Batu Lintang, C. belcheri seeds set on marble chips showed high mortality from the fourth to the sixth month which coincided with the dry season. Overall, survival of both types of seeds was better at Batu Lintang.

Fig. 2 summarizes the daily salinity fluctuations from January until December. It can be seen that salinity fluctuation were higher at Batu Lintang (10-30 ppt) compared to Muka Head (28-35 ppt). Salinities at Muka Head rarely dip below 30 ppt.

Figure 2. Annual salinity fluctuations.

Figure 3. Frequency of size distribution of Ctenostrea belcheri at Muka Head and Batu Lintang.
while Batu Lintang experienced a period of sustained high salinity (25-30 ppt) from December till March corresponding to the dry season on the west coast of Peninsular Malaysia. Batu Lintang experienced large salinity fluctuations during the end of October through early November during the intermonsoonal rain.

Though direct measurements were not made, it was observed that biofouling (mainly barnacles) at Muka Head site was more severe. In the case of Batu Lintang, biofouling (bryozoans, sponges and barnacles) was moderate to severe only during the dry season (December-April). During the rainy season, biofouling was insignificant.

Fig. 3 shows the size distribution of 18 months old C. belcheri cultured at Muka Head and Batu Lintang. Measurements from all replicates were lumped together for compiling the size distribution since there were no significant differences between the different kinds of seeds at each site. C. belcheri cultured at Batu Lintang showed a wider range of sizes, from 3.0 to 10.9 cm with high frequency at the 6.0-6.9 cm, 7.0-7.9 cm and 8.0-8.9 cm class (24.83%, 27.93% and 21.38%, respectively). Oysters from Muka Head showed a narrower size range from 3.0 to 10.9 cm with high frequency at the 6.0-6.9 cm and 7.0-7.9 cm class (27.45% and 39.22% respectively).

DISCUSSION

The results showed that during the first twelve months, single C. belcheri seeds (cultchicen or set on marble chip) grew faster at Muka Head compared to Batu Lintang but after 12 months, the differences disappeared. Survival was poorer at Muka Head (2.0% vs. 13.4%).

The growth rate was low at Batu Lintang during the intermonsoonal rain (the first two months after transplantation). Reduction in anestosmated ration due to shell closures and additional metabolic costs associated with maintenance of osmotic balance under a stressful salinity regemay explain lack of growth in oysters at Batu Lintang during the first two months after being transplanted from a marine environment. However, rapid growth rate of C. belcheri seeds was recorded after 12 months during the intermonsoonal rain with large salinity fluctuations (10-30 ppt). According to Bernard (1983), osmotic growth of oysters occurs between 16 and 31 ppt. There is also, probably, a more abundant supply of suitable food organisms in the estuary during the short spells of low salinity occurring during a tidal cycle (Rao & Nayar, 1956), though the rate of growth is dependent not only upon the availability of food in the environment but also upon the ability of the organisms to secure it. There was a great variation in the size of individuals at both sites reflecting possible genetic variation between individuals.

The mean shell height of 5 cm in 12 months was lower than the approximately 8-9 cm reported for C. belcheri in Sabah, Malaysia (Chin & Lim, 1975), S. hughesi in Southern Thailand (Brotmanonde, 1978), and C. madrasensis in India (Joseph & Joseph, 1983; 1985), but higher than 4 cm of C. rhisophorae in Israel (Ramos et al., 1986). However, it is difficult to compare the results from data obtained from different areas. Rate of growth of oysters is known to be affected by a variety of ecological and environmental factors such as nutrition, temperature, salinity and water quality (Kinc, 1971). Moreover, the difference in quality of suspended matter, and in quantity and quality of available food was not recorded in this experiment.

The poorer survival of C. belcheri in marine coastal waters (Muka Head) may suggest that C. belcheri, though euryhaline is essentially an estuarine species. This is supported by the studies on the performance of oyster to the setting stage of C. belcheri (Tan, 1993) where it was shown, that as the larvae developed from the embryo to the setting stage, there is a progressive increase in tolerance to lower salinities, demonstrating how well adapted C. belcheri is in exploiting the estuarine habitat where competition from the fully marine species is much reduced. Though direct measurements were not made, it was observed that biofouling (mainly barnacles) at Muka Head site was more severe between sampling. The amount of biofouling organisms on the trays were beginning to clog up the holes.
in the trays, restricting water circulation and eventually caused the mortality, or could slow the growth of oysters. The high mortality recorded at Muka Head may also be caused by strong waves which tossed the oysters around inside the trays, often piling them in one corner, and leaving less room for water circulation between the oyster.

Cultivation of C. belcheri at estuarine sites is generally favoured over marine sites. The evidence presented here suggests that cultivation of C. belcheri at estuarine sites might produce greater survival of oysters than cultivation at marine sites. Careful consideration should be given to the advantages of cultivating C. belcheri at an estuarine site, particularly in relation to fouling problems and the availability of food in the environment.

ACKNOWLEDGEMENTS

This study was carried out with funding support from IDRC (International Development Research Centre) Canada and the Government of Malaysia. We are grateful to the project staff for their assistance.

REFERENCES

