ANAMIXIDAE (AMPHIPODA: CRUSTACEA) FROM THE ANDAMAN SEA, NORTH-EASTERN INDIAN OCEAN

Teunis Jansen1 and Grete E. Dinesen2

Department of Marine Invertebrates, Zoological Museum, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark.

Present addresses:
1Department of Information Technology, Danish Institute for Fisheries Research, Jægersborgvej 64–66, 2800 Kgs. Lyngby, Denmark.
2Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, 8200 Aarhus N, Denmark.

ABSTRACT

Anamixidae (Amphipoda) are here reported for the first time in the Andaman Sea. Specimens were obtained using SCUBA and from the Reference Collection at Phuket Marine Biological Center. Of the Anamixidae collected from oysters, live coral, and coral rubble at depths not exceeding 20 m we record here one known species: Anamixis kateleuensis and three, possibly undescribed species: Paranamixis sp. A, Paranamixis sp. B, and Nepanamixis sp. A. Illustrations and discussion of the characters that differentiate these species from resembling known species are provided.

INTRODUCTION

The amphipod family Anamixidae comprises three genera: Anamixis with 19 species, Paranamixis with 11 species, and Nepanamixis with four species. The taxonomy, ecology and phylogeny of the Anamixidae were revised by Thomas (1997), who, in a comprehensive monograph, also provided a key to the 33 valid species. Thomas (1997) regarded Anamixis torrida Barnard, 1970 as invalid because the original description was based on leucomorphs and 'probably represents several species of possibly Anamixis and Paranamixis'. More recently Ortiz and Lalana (1997) described Paranamixis ledoyeri from Bunaken, Sulawesi, and Lyon and Myers (1990) reported a single specimen of a potentially new species of Paranamixis from the Gulf of Aqaba, Red Sea.

The Anamixidae are mainly tropical and subtropical species, occurring in shallow waters of the Indian Ocean, Pacific Oceans, and the Caribbean, with only one species recorded from deeper cold water (Thomas, 1997).

Anamixids have a cryptic life style on coral reefs, living concealed in coral rubble and among boulders and algae tufts (Moore, 1987; Lyons and Myers, 1990; Thomas, 1997). Anamixid species are often found in samples of various sponges and ascidian species, which live attached to algae and hard bottom faces (Moore, 1987; Thomas, 1997). The few anamixid species that have been studied alive inhabit asconoid sponges as well as solitary and compound colonial ascidians (Thomas, 1979, 1997; Thomas and Taylor, 1981). Although they have been found to live as commensals, suspension feeding using the host-generated water current (Thomas, 1979; 1981; Thomas and Taylor, 1981), other feeding habits may occur (Thomas and Taylor, 1981; Thomas, 1997).

Thomas and Barnard (1983) described the remarkable life cycle shown by anamixids. This involves two highly different developmental stages, in which males pass through a single moult from
an initial ‘leucomorph’ stage (males and females) into a hyperadult ‘anamorph’ stage (terminal males only). Anamorphs exhibit many morphological characters of great taxonomic value, and can readily be identified to species. At the leucomorph developmental stage, anamixids species are nearly identical, and according to Thomas (1997) the extreme morphological dissimilarities from the anamorph developmental stage explain the assignment of leucomorphs to *Leucothoides* (family *Leucothoidae*) prior to Thomas and Barnard (1983). To date studies of the developmental stages by *in situ* rearing experiments have resolved the leucomorph–anamorph relationship of only four anamixid species (Thomas and Barnard, 1983; Thomas, 1997).

We give here the first account of Anamixidae collected from the Andaman Sea, providing records of one named species and three potentially new species. Illustrations of character states deviating from similar known species are provided.

Abbreviations and terminology

BIOSHELF = The Thai–Danish Scientific Cooperation Program Biodiversity of marine fauna of Continental Shelf in the Andaman Sea between Phuket Marine Biological Centre (PMBC), Phuket, Thailand and Zoological Museum, University of Copenhagen (ZMUC), Denmark.

G1–2 = Gnathopod 1–2.

MATERIALS AND METHODS

The material examined comes from: 1. The PMBC Reference Collection, PMBC; 2. Material collected by the authors during the BIOSHELF Crustacea Workshop December 1998. Collections were made by hand while SCUBA diving, notably from heavily encrusted oysters, *Hyoitissa hyotis* (Linnaeus, 1758) attached to corals and boulders. Material was sieved (mesh size 1 mm) and fixed in a 4% formaldehyde borax-neutralised seawater solution and transferred to 70% ethanol after one week.

Oysters were identified from Oliver (1992). Anamixid specimens were examined under dissecting microscope and compound light microscopes and drawn using a camera lucida. Anamixids were identified from Walker (1904), Schellenberg (1938), Ledoyer (1982), Myers (1985), Moore (1987), Lyons and Myers (1990), Barnard and Karaman (1991), Ortiz and Lalana (1997) and Thomas (1997). At present we have not had the opportunity to compare the potential new species with type material of the most similar described species. This is needed before verification can be provided in form of valid new species descriptions or redescriptions.

Stations

The BIOSHELF stations are listed elsewhere in this volume. The stations referred to in the text from the 1981–82 collection by Jorgen Hylleberg and Anuwat Nateewathana and sorted by Somchai Bussarawit at Patong, Surin Island and Similan Islands have the following data: 1981–82, coll-7, Surin, mangrove bay, 3 m, on/in oyster; 1981–82, coll-8, Surin, strait, 0.5 m, dead *Goniastrea retiformis* (Lamarck); 1981–82, coll-9, Surin, 3 m, oyster shell; 1981–82, coll-10, Surin, mangrove bay, 5 m, old coral block; 1981–82, coll-11, Surin, mangrove bay, porous live coral; 1981–82, coll-12, Surin, mangrove bay, in *Goniastrea retiformis*; 1981–82, coll-14, Surin, 0.5 m, dead coral; 1981–82, coll-15, Surin, mangrove bay, on/in oyster; 1981–82, coll-17, Surin, strait, 0.5 m, dead *Goniastrea retiformis*; 1981–82, coll-19, Surin, N-S strait, 3 m, oyster; 1981–82, coll-20, Similan W, 5 m, dead coral and *Montipora*; 1981–82, coll-21, Similan, 5 m, dead *Acropora* sp.; 1981–82, coll-22, Similan, mangrove bay, 5 m, in *Goniastrea retiformis*; 1981–82, coll-23, Surin, 3 m, oyster shell.

RESULTS

Family Anamixidae Stebbing, 1897

Remarks

Leucomorph specimens of most Anamixis and Paranamixis are currently indistinguishable from each other (Thomas, 1997). Leucomorph specimens in PMBC 14926 were found together with four terminal males of Paranamixis sp. B, while leucomorphs in PMBC 14927 were found together with one terminal male of Paranamixis sp. B. and one terminal male of Paranamixis sp. A.

Genus Anamixis Stebbing, 1897

Anamixis kateluensis Thomas, 1997

Material examined

Remarks

The three specimens in 1981–82, coll-19 differ minutely from the drawings and descriptions given by Thomas (1997, fig. 10 “K” C and fig. 10 “K” B). Coxa 1 bears teeth on the ventral side and lacks the anterodistal projection. According to Thomas (1997) the leucomorphs are unknown.

Habitat and Distribution

Surin Island and Similan Islands, Andaman Sea. From oyster shells and dead coral. Previously reported from coral rubble in the central Pacific Ocean, Ifaluk Atoll, Falarik Island, Caroline Islands, 0–1 m (Thomas, 1997).

Genus Paranamixis Schellenberg, 1938

Paranamixis sp. A

(Fig. 1a–b)

Material examined

Remarks

Paranamixis sp. A. differs from Paranamixis sp. B. by the small rounded process on the anterodistal margin of coxa 2. Paranamixis sp. A. differs from the other species in the genus (including the undescribed species found by Lyons and Myers, 1990) by the combination of following characters: coxa 2 anterodistal margin with small rounded process; G2 basis anterior margin smooth; G2 dactylus posterior margin with 3 small teeth medially, and 1 large tooth 1/3 from apex, margin smooth on distal third.

Paranamixis sp. B

(Fig. 1c)

Material examined

Anamorphs: PMBC 14930, 4 specimens, Racha Yai Island, southern point, 07º35.21´N, 098º21.48´E, SCUBA max. depth 30 m, coll. G. Dinesen and T. Jansen, 05.12.1998; PMBC 14931,

Remarks

Paranamixis sp. B. differs from *Paranamixis* sp. A. by the large denticulate process on the anterodistal margin of coxa 2. *Paranamixis* sp. B. differs the other species in the genus (including the undescribed species found by Lyons and Myers, 1990) by the combination of following characters: coxa 2 anterodistal margin with large denticulated process; G2 basis anterior margin smooth; G2 dactylus posterior margin with 3 small teeth medially, and 1 large tooth one-third from apex, margin smooth on distal third.

Figure 1 *Paranamixis* sp. A (anamorph). (c) *Paranamixis* sp. B (anamorph)
(a) G2 dactylus. (b) Coxa 2. (c) Coxa 2. (a) upper bar = 0.2 mm. (b–c) lower bar = 0.2 mm.

1 specimen, Hae Island, southern bay, 07°44.38´N, 98°22.10´E, SCUBA max. depth 12 m, coll. G. Dinesen and T. Jansen, 09.12.1998;

Material examined

Remarks

The 25 specimens were found together with one anamorph specimen of *Nepanamixis* sp. A.
Nepanamixis sp. A
(Fig. 2a–c)

Material examined

Remarks
The shape of G1 carpus and propodus, together with the 13 (rather than 9) ommatidea, distinguishes this species from the other species of Nepanamixis, although the authors have not yet had the opportunity to examine the type material of N. grossimana (Ledoyer, 1978). Nepanamixis sp. A is most closely related to N. grossimana (as figured in Thomas, 1997), but it differs from this species in several details: ventral margin of coxa 1 bears a triangular process; palm of G1 carpus lacks tubercles and cusps; apex of propodus is without the “thick spine”. Nepanamixis sp. A shares at least two characters with N. grossimana separating them from all other species in the genus namely: one very robust setae on the apex of G1 carpus and a nodulose inner margin of G1 propodus. Nepanamixis sp. A shares at least two characters with N. grossimana and N. dianthus Thomas, 1997, separating these three species from the remaining species in the genus namely: emarginate ventral margin of coxa 4; general shape of G2.

Figure 2 Nepanamixis sp. A (anamorph).
(a) Whole specimen. (b) Coxa 1. (c) G1. (a) upper bar = 1.0 mm. (b–c) lower bar = 0.2 mm.
DISCUSSION

A total number of 19 anamorph specimens of three, possibly four anamixid species have been recorded from Surin Island, the Similan Islands and Phuket Island. The small number of SCUBA samples from coral reef and coral rubble in the Andaman Sea contributes to the low numbers recorded from this area. Our limited sampling does show that anamixid amphipods are common in these habitats. Anamixids were found together with live oysters (*Hyotissa hyotis*) and coral (*Montipora* sp., and *Goniastrea retiformis*) as well as oyster shells and coral rubble (*e.g.* from *Acropora*). This agrees with the usual types of substrata from which anamixids are collected. The oysters and corals are not the true anamixid hosts. Instead they are likely to provide a substrate for sessile animals such as ascidians and asconoid sponges, the only organisms so far known to act as host for anamixid amphipods. Additional local sampling on this type of substratum is therefore likely to reveal additional species of these cryptic-living amphipods. Ship-operated sampling techniques are not practical on rocky bottoms, and sampling shallow water using SCUBA is strongly recommended for collecting anamixids. This technique allows selective and precise sampling of potential invertebrate hosts (epiphytic and epizoic sponges and ascidians) and could thereby provide valuable information on the host relationships of the commensal Anamixidae.

The species identification of the anamixids is based entirely on anamorph males, as leucomorphs cannot be assigned to any species. As Thomas and Barnard (1983) and Thomas (1997) indicated, only *in vitro* rearing of sponges and ascidians hosting leucomorph anamixids will allow male leucomorphs to moult to their anamorph stage, which would help to establish the leucomorph–anamorph species correlation.

The two *Paranamixis* species recorded here are only separated by one morphological difference, a difference that could easily be within the variation range of one species. Although the 10 (5 of each) examined specimens showed no intermediate forms, it would be preferable to analyse the variation more thoroughly by examining a more numerous material. At present the authors have not yet had the opportunity to compare the potentially undescribed species with type material of the most similar species, and a final determination of their identity has not been made.

ACKNOWLEDGEMENTS

Somchai Bussawarit, Charatsee Aungtongya and the staff members of the Reference Collection at PMBC are thanked for excellent help and working conditions. Matz Berggren and all workshop participants are thanked for good spirited diving accompany and valuable discussions. We are both indebted to Niel L. Bruce for his valuable and always good-humoured guidance and encouragement.
REFERENCES

