INTRODUCTION

Of the world’s oceans, the Tropical West Pacific is richest in animal diversity. The cephalopod fauna in this region is likewise rich, but the taxonomic/faunistic inventory of the cephalopods inhabiting this area seems to be still insufficient or fragmentary. The present paper reviews the contributions of the early authors, and the current status of knowledge on Tropical West Pacific cephalopod diversity, comprising mainly neritic species (i.e. Sepiidae, Loliginidae and shallow water Octopodidae), and suggests directions for future research. The Tropical West Pacific termed here is tentatively delineated as ranging from Hong Kong and the South China Sea south to the Arafura Sea, covering the main part of Indonesian waters. This area is a part of the vast Indo-West Pacific Region (Ekman, 1953; Briggs, 1973). This is also part of the Indo-Malaysia, Sino-Japan and Polynesia described by Khromov (1998) (Figure 1).

The cephalopod diversity in the subtropical regions in the north, such as Taiwan and southwestern Japan, has been recently inventoried by Lu (1998a) and Kubodera and Lu (2002). Those in the south, such as subtropical Australian waters, have been consolidated by contributions of Roper (1983), Lu (1998b), and Norman (1992a, b, c) among others. Some but not all species in these adjoining seas are in common with the fauna occupying the region under discussion.

HISTORICAL STUDIES

Except for several fragmentary works in the past, the earliest systematic study on Tropical West Pacific cephalopods may be that based on the Astrolabe collection. Quoy and Gaimard (1832) reported five species from New Guinea or Celebes: Sepia latimanus, Sepioteuthis guinensis, S. lunulata, Onychoteuthis (=Abralia) armatus, and Octopus membranaceus.

Among 17 “zoogeographical regions” of Hoyle (1886) based on the cephalopod collection by the HMS Challenger, the Area IX (The Indo-Malayan Region) covers most of the Tropical West Pacific related here. Hoyle enumerated 40 neritic species plus 7 pelagic (offshore) species. Those 40 neritic species consisted of 19 sepiids, four sepiolids, eight loliginids and nine octopodids. About 57% (22 spp.) of them are still valid species. Most of the commercially important species, which are large in both body and stock sizes, were already named at that date.

The Dutch Siboga Expedition yielded a quite rich cephalopod collection from Indonesian waters. Adam (1939a, b, 1954) made thorough studies on this collection. He (1939a) lumped the 12 names of Sepioteuthis in use at that time into a single species S. lessoniana Lesson, 1930, describing it as the sole species living in this region.

Adam (1939b) also reviewed the Tropical West Pacific Sepiidae; he recognized 17 species of the genus Sepia and two species of the genus Sepiella in this area. Strangely enough, one of the
commonest commercial species, *Sepia recurvirostra* was not in Adam’s material. In the later revision by Adam and Rees (1966) *Sepia* species living in the region were reduced to ten in number. Adam (1954) also studied the Loligininae finding seven, including two new, species. The genera he used were *Loliolus, Loligo, Doryteuthis* and *Uroteuthis*.

In a later study, besides 11 oegopsids, three bathypelagic and four epipelagic octopods, Adam (1954) also identified ten species of *Octopus* and two species of *Hapalochelelaena*, but four deep-water *Benthoctopus* species in the *Siboga* collection remained unidentified.

Voss (1963) published the monograph of the Philippine cephalopods, treating 54 species (one Nautilidae, 30 neritic and 23 oceanic species) mostly taken by the U.S. Fisheries Steamer *Albatross* between 1907 and 1909. For this monograph, he (1962) established eight new species/subspecies that were thought to be endemic to the Philippines. However, two oegopsid taxa therein were later discovered elsewhere. Particularly noteworthy were discoveries of four new bobtail cuttlefish (three sepiolids and a single sepiadariid). Voss (1963) enumerated 17 taxa (among which 9 are neritic species) as the Indo-Pacific elements, eight as the Indo-Malayan elements, and five being common with the Japanese fauna.

RECENT STUDIES

The recent critical morphological studies and exploration of new localities revised the systematics of many cephalopod taxa.
Since the world-wide revision of the Sepiidae by Adam and Rees (1966), more species have been added from South Africa (Roelveld, 1972), the Indian Ocean (Khromov, 1982, 1988a; Homenko and Khromov, 1984), Japan (Okutani et al., 1987) and elsewhere. But, only a few additions to the Tropical West Pacific sepiid fauna have been made public (Khromov, 1987).

According to the recent reviews of this family by Lu (1998b), Khromov et al. (1998), Khromov (1998b), and Norman and Lu (2000), the Tropical West Pacific yields the following 24 species:

Sepia aculeata Orbigny, 1848; S. andreana Steenstrup, 1875; S. bandensis Adam, 1939; S. brevimana Steenstrup, 1875; S. carinata Sasaki, 1929; S. elliptica Hoyle, 1885 (?= S. madokai Adam, 1939); S. esculenta Hoyle, 1885; S. kobiensis Hoyle, 1885; S. latimanus Quoy and Gaimard, 1832; S. loriageri Wülker, 1910; S. lycidas Gray, 1849; S. manshiensis Li and Chen, 1989; S. papuensis Hoyle, 1885; S. pharaonis Ehrenberg, 1831; S. recurvirostra Steenstrup, 1875; S. smithi Hoyle, 1885; S. stellifera Homenko and Khromov, 1984; S. vietnamica Khromov, 1987; S. vossi Khromov, 1896; Metasepia pfefferi Hoyle, 1885; M. tullbergi Appellöf, 1886; Sepiella inermis Orbigny, 1848; S. japonica Sasaki, 1929; and S. weberi Adam, 1939.

The existence of four more species need to be confirmed by future investigations: S. mestus Gray, 1849; S. prashadi Winckworth, 1939; S. sulcata Hoyle, 1885; and Sepiella ocellata Pfeffer, 1884. Among these 24 species, 46% (11 species) are common with subtropical Taiwanese fauna studied by Lu (1998). The other four species occurring in Taiwan have not been reported from the Tropical West Pacific: Sepia foliopeza Okutani and Tagawa, 1987, S. perdex Sasaki, 1913, S. cf. mestus Gray, 1849 and S. sp. TW1.

Natsukari and Okutani (1975) reduced Loligo etheridgei Berry, 1918, L. formsosana Sasaki, 1929 and L. indica sensu Hoyle, 1886 to be synonyms of L. chinensis Gray, 1849. Yeatman and Benzie (1993) recognized the existence of cryptic “species” in Loligo in northern Australia. This suggests that the L. chinensis (now Uroteuthis (Photololigo) by Vecchione et al., 1998) population in the vast Tropical West Pacific is a species-complex comprising multiple morphologically/genetically segregated populations.

This is the same in Loligo edulis (now Uroteuthis (Photololigo) by Vecchione et al., 1998). Natsukari et al. (1986) clarified that two morphologically different forms, that had been treated as either species/subspecies or local variants by the early authors (Wakiya and Ishikawa, 1921; Ishikawa, 1933; Sasaki, 1929; Okutani, 1967 etc.), are geographical/seasonal broods within a species. The U. edulis population in the Japanese waters exhibits remarkable variability, especially body proportion and size at maturity (Okutani, 1979), therefore, local fishermen name them differently (Figure 2). The existence of small-mature populations near Australia (Lu, personal communication) and in the Gulf of Thailand (Loligo n. sp. of Chotiyaputta, 1993), as well as Loligo sp. A of Voss, 1963 (= L. vossi Nesis, 1987) may represent polymorphism or possible species-complex within the vast distributional range of U. edulis.

Another polymorphism/species-complex is observed in Loligo duvauceli (now Uroteuthis (Photololigo) by Vecchione et al., 1998) as well. It is well known that there is a very slender type and a chubby type within the commercial catch.

The taxonomic status of Loligo singhalensis Ortmann 1888 (now Uroteuthis (Photololigo) by Vecchione et al., 1998) was reviewed by Korzun and Alexeyev (1991) on the basis of gladius morphology. It is most probable that specimens hitherto identified as Loligo singhalensis (e.g. Adam, 1954; Okutani, 1970; Voss, 1963; Voss and Williamson, 1972 etc.) may contain slender specimens of U. edulis, otherwise either U. bengalensis (Jothinayagam, 1987) or U. robsoni (Alexeyev, 1992).

Among the critical revision of small-sized loliginids by Natsukari (1983, 1984) the establishment of a new subgenus Nipponololigo of Loligo (now a subgenus of Liololus by Vecchione et al., 1998) may be noteworthy. This revision lumped about ten names into four species (L. japonica, L. uyii, L. sumatrensis and L. beka) that are clearly diagnosed and characteristically confined to the temperate to Tropical West Pacific. The cephalopod fauna in southern China reported by Dong (1988) contained three out of four taxa (excluding L. japonica), but he still used “old”
names. Nateewanthana (1992) also confirmed that *L. beka* extends to the Andaman Sea. Norman and Lu (2000) admitted that the above-mentioned four taxa all extend down to the Tropical West Pacific, such as the Gulf of Thailand. Two species of *Loliolus* (s.s.), namely, *L. hardwickei* (Gray, 1849) and *L. affinis* Steenstrup, 1856 are confined to the Indo-Malayan region including Indonesian waters. Both of them never extend to the subtropical zones in both north and south.

The diversity of shallow-water octopodids in the Tropical West Pacific has still been only partially solved at present (see Norman and Lu, 2000). According to the recent revision of the family
Octopodinae in the West Pacific by Toll and Voss (1998), out of 82 names 20 are nomen dubia and only several valid species were from the Tropical West Pacific. According to them, the names commonly applied to Tropical West Pacific octopuses, such as Octopus dollfusi Robson, 1928, and O. membranaceus Quoy and Gaimard, 1832 are included under the category of nomen dubia.

The effort of the recent taxonomic revision and review of Tropical West Pacific octopodids by Norman (1991, 1992a, b, c, 1993), Norman and Hochberg (1994), Norman and Sweeney (1997), Nateewathana (1997), Nateewathana and Norman (1999), Norman and Lu (2000), Kubodera and Lu (2002) resulted in determining the existence of some 34 shallow-water species in this region (Table 1). The number of identified species (34) is far larger than octopodine diversity in Australian waters (15 species by Stranks, 1998: three are common with the Tropical West Pacific fauna), the western Atlantic Ocean (15 species by Voss and Toll, 1998), Indian Ocean and Red Sea (12 species by Toll, 1998: two are common herewith), and the eastern Atlantic and the Mediterranean Sea (eight by Mangold, 1998). The achievement hitherto obtained by the effort of recent taxonomists clarified that the Tropical West Pacific yields the most diversified littoral (shallow-water) octopod fauna. This may be also the same for deep-sea species, although they have not yet been worked out (Norman et al., 1997). Kubodera and Lu (2002) reported that the Chinese-Japanese Subtropical Region yielded 52 species of Octopodidae, about 1.5 times as many species as those listed in Table 1 showing the latest literature review on identified shallow-water octopodids in the Tropical West Pacific. Such a high diversity is because the fauna that they reported partially overlap those reported here and their list also contained some cool-temperate elements.

The taxonomy of the Tropical West Pacific octopuses is progressing, but there are many more species still unsolved with only tentative species numbers (such as 1, 2, 3 or A, B, C by author). Five species among 11 shallow-water octopodids from the Hong Kong’s territorial waters examined by Norman and Hochberg (1994), Octopus sp.1 to sp.5 remain unidentified. They re-identified Octopus spp. in Voss and Williamson (1972) showing that O. “aegina” sensu Voss and Williamson was O. marginatus, O. “dollfusi” was O. aegina, O. “macropus” was O luteus, O. “membranaceus” was O. areolatus (in part) and Octopus sp. 5 (in part) of Norman and Hochberg, 1994. The latter has now been described as O. rex Nateewathana and Norman, 1999. They also clarified that Octopus A of Voss and Williamson (1972) was Cistopus indicus. However, Octopus B, C, and D still remain unsolved.

Norman and Sweeney (1997) likewise re- identified octopodids recorded from the Philippines by previous authors including Voss (1963). They found that among six species reported by him, O “macropus” sensu Voss was O. nocturnus, O. “membranaceus” was O. exanulatus, and O. “horridus” was mixture of O.acleatus, O. cyanea and O. sp. 2 of Norman and Sweeney, 1997. Five species (sp. 1 to sp. 5) out of 20 Philippine shallow-water octopodids by Norman and Sweeney (1997) remain unidentified, except Octopus sp. 1 which has been subsequently identified as O. rex. In the comprehensive treatment of world-wide octopuses by Norman (2000), several unidentified octopodids in the Tropical West Pacific are included such as Hapalochlaena sp. 1 and sp.4, and Octopus sp. 6, sp. 16, sp. 18, sp. 19, and sp. 20 among others.

Such an insufficient taxonomic status is common to the octopod fauna of the adjacent waters: Nateewathana (1997) studied ten species of the genus Octopus in the Andaman Sea, but 3 species (ocellate A,B, and C) remained unidentified. (Later, they were described as O. rex, O. neglectus and O siamensis, respectively, by Nateewathana and Norman in 1999) (Figure 3). Lu (1998) investigated Taiwanese cephalopod diversity in which he listed 22 species of the family Octopodidae. Among them, 10 species (45%) were unidentified (Octopus sp. 1, sp. 5, and sp. 6 to sp. 13). Kubodera and Lu (2002) published a check list of cephalopods hitherto recorded from Japan, Taiwan, the East China Sea and the South China Sea. In their list there are 52 species of the Octopodidae. In here, 13 unidentified species (Octopus TW1 to TW13) from Taiwan are included. In addition are several more unidentified taxa, such as Voss and Williamson’s sp. B and C, and studies of them are.
<table>
<thead>
<tr>
<th>Species</th>
<th>Occurrence (Reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ameloctopus litoralis Norman, 1992</td>
<td>Arafura Sea (Norman, 1992)</td>
</tr>
<tr>
<td>Cistopus indicus (Rapp in Orbigny, 1835)</td>
<td>South China Sea (Norman and Lu, 2000); Hong Kong (Norman and Hochberg, 1994); Philippines (Norman and Sweeney, 1997); Thai (Nateewathana, 1997); Celebes (Toll and Voss, 1998)</td>
</tr>
<tr>
<td>Hapalaochlaena lunulata (Q. and G, 1832)</td>
<td>South China Sea (Norman and Lu, 2000); Philippines (Norman and Sweeney, 1999); Papua New Guinea (Toll and Voss, 1998)</td>
</tr>
<tr>
<td>H. nierstrazi (Adam, 1938)</td>
<td>Singapore to Burma (Norman and Lu, 2000)</td>
</tr>
<tr>
<td>H. cf. fasciata (Hoyle, 1885)</td>
<td>South China Sea (Norman and Lu, 2000); Hong Kong (Norman and Hochberg, 1994)</td>
</tr>
<tr>
<td>H. cf. maculosa (Hoyle, 1883)</td>
<td>South China Sea (Norman and Lu, 2000)</td>
</tr>
<tr>
<td>Octopus abaculus Norman and Sweeney, 1997</td>
<td>Philippines (Norman and Sweeney, 1997)</td>
</tr>
<tr>
<td>O. aculeatus Orbigny, 1834</td>
<td>South China Sea (Norman and Lu, 2000); Hong Kong (Norman and Hochberg, 1994); Philippines (Norman and Sweeney, 1997); Thai (Nateewathana, 1997); Celebes (Toll and Voss, 1998)</td>
</tr>
<tr>
<td>O. aegina Gray, 1849</td>
<td>Thai (Nateewathana, 1997)</td>
</tr>
<tr>
<td>O. areolatus Orbigny, 1839</td>
<td>Western Pacific (Norman and Lu, 2000)</td>
</tr>
<tr>
<td>O. bocki Adam, 1941</td>
<td>Singapore (Toll and Voss, 1998)</td>
</tr>
<tr>
<td>O. carneus Gray, 1849</td>
<td>Northern Australia (Norman, 1992b)</td>
</tr>
<tr>
<td>O. dierythraeus Norman, 1992</td>
<td>Northern Australia (Norman, 1992b); Philippines (Norman and Sweeney, 1997); Thai (Nateewathana, 1997)</td>
</tr>
<tr>
<td>O. examulatus Norman, 1993</td>
<td>Hong Kong (Norman and Hochberg, 1994); Philippines (Norman and Sweeney, 1997); Thai (Nateewathana, 1997)</td>
</tr>
<tr>
<td>*O. fangsiao d’Orbigny, 1939-41</td>
<td>Singapore to Malaysia, South China Sea (Norman and Lu, 2000)</td>
</tr>
<tr>
<td>O. favonius Gray, 1849</td>
<td>Western Pacific (Norman and Lu, 2000)</td>
</tr>
<tr>
<td>O. graptus Norman, 1992</td>
<td>Northern Australia (Norman, 1992b)</td>
</tr>
<tr>
<td>O. harmandi Rochebrune, 1882</td>
<td>South Vietnam (Toll and Voss, 1998); South China Sea (Norman and Lu, 2000)</td>
</tr>
<tr>
<td>O. luteus (Sasaki, 1929)</td>
<td>Hong Kong (Norman and Hochberg, 1994); Philippines (Norman and Sweeney, 1997); Thai (Nateewathana, 1997)</td>
</tr>
<tr>
<td>O. marginatus Taki, 1964</td>
<td>Hong Kong (Norman and Hochberg, 1994); Thai (Nateewathana, 1997)</td>
</tr>
<tr>
<td>O. microphthalmus Goodrich, 1886</td>
<td>Singapore to Malaysia, South China Sea (Norman and Lu, 2000)</td>
</tr>
<tr>
<td>O. motoni Norman, 1993</td>
<td>Western Pacific (Norman and Lu, 2000)</td>
</tr>
<tr>
<td>O. nocturnus Norman and Sweeney, 1997</td>
<td>Philippines (Norman and Sweeney, 1997); Thai (Nateewathana and Norman, 1999)</td>
</tr>
<tr>
<td>O. cf. niveus Lesson, 1830</td>
<td>Thai (Nateewathana and Norman, 1999)</td>
</tr>
<tr>
<td>O. ornatus Gould, 1852</td>
<td>Tropical West Pacific (Norman, 1993)</td>
</tr>
<tr>
<td>O. polycenia Gray, 1849</td>
<td>Northern Australia (Norman, 1992)</td>
</tr>
<tr>
<td>O. punilus Norman and Sweeney, 1997</td>
<td>Philippines (Norman and Sweeney, 1997)</td>
</tr>
<tr>
<td>O. rex Nateewathana and Norman, 1999</td>
<td>Hong Kong (Norman and Hochberg, 1994); Philippines (Norman and Sweeney, 1997); Thai (Nateewathana and Norman, 1999)</td>
</tr>
<tr>
<td>O. siamensis Nateewathana and Norman, 1999</td>
<td>Thai (Nateewathana and Norman, 1999)</td>
</tr>
<tr>
<td>O. teuthoides Robson, 1929</td>
<td>Philippines (Norman and Sweeney, 1997); Thai (Nateewathana and Norman, 1999)</td>
</tr>
<tr>
<td>O. cf. vitiensis Hoyle, 1885</td>
<td>Philippines (Norman and Sweeney, 1997); South China Sea (Norman and Lu, 2000)</td>
</tr>
<tr>
<td>O. cf. vulgaris Cuvier, 1797</td>
<td>Thai (Nateewathana, 1997)</td>
</tr>
<tr>
<td>O. wolfi Wülker, 1913</td>
<td>Philippines (Norman and Sweeney, 1997); Tropical West Pacific (Norman and Lu, 2000)</td>
</tr>
</tbody>
</table>
Past, present and future studies on cephalopod diversity in tropical West Pacific

It is axiomatic that the status of some octopuses that are still unsolved from adjacent seas mentioned above are included in the common elements to the Tropical West Pacific fauna. The promotion of taxonomic studies on them are indispensable in obtaining the whole picture of Tropical West Pacific octopodid diversity.

FUTURE STUDIES

As was mentioned above, Sepiodeuthis lessoniana in the Indo-Pacific had once been lumped into a single species by Adam (1939). However, the critical comparisons of reproductive biology (spawning season, egg-laying substratum, and number of eggs per capsule), behavior (habitat depth and schooling) and morphology (size and chromatophore pattern) on the populations of Okinawa revealed that S. “lessoniana” consisted of three taxa (Segawa et al., 1993a; b; Izuka et al. 1994). This was corroborated by biochemical analyses (Izuka et al., 1996). The investigation has thus far been restricted to the populations of the Japanese Archipelago, therefore, studies on more extensive areas of Tropical West Pacific are needed to clarify the true status of the S. “lessoniana”-complex. The next step will be the settlement of scientific names for each taxon.

Thus the recognition of separate species needs the observation in life history besides the morphological examination on the fixed/preserved specimens.

Similar approaches may be required to elucidate the true picture of species complexes of the three Uroteuthis (Photololigo) species: edulis, chinensis, and duvauceli. For instance, it is already clear that the U. edulis-complex may contain variable phenotypes. The taxonomic status of U.(P) singhalensis may need more scrutiny. Molecular approaches may help to elucidate the relationships, particularly those of cryptic species, but the morphological re-evaluation on voucher specimens is most indispensable.

Some modern students are apt to rely on biochemical/molecular approaches without having sufficient acquaintance with the morphological recognition of taxa. In response to this demand, the precise alpha-taxonomical description for

Octopus rex Nateewathana and Norman, 1999

= Octopus sp. 5 of Norman and Hochberg, 1994
= Octopus sp. 1 of Norman and Sweency, 1997
= Octopus sp. A of Nateewathana, 1997
= Octopus sp. A of Norman, 1998

Figure 3. Octopus rex Nateewathana and Norman ever called by 4 code names.

still underway by either of two authors (Lu and Kubodera) or others. Lu (2000) also investigated the cephalopod fauna around Tong-Sha Island (Pratas Islands) where he found six unidentified octopodids (sp. A to F). Lu and Norman (2000) published an abridged list of synonyms and unsolved species of South China Sea cephalopods. Among 29 names listed by them, 12 were misidentifications and 5 were synonyms, and remaining names are still in an unsolved status. Lu and Boucher-Rodoni (2001) treated the genus Octopus from the Wallis and Futuna Islands (central South Pacific). But, all four species were unsolved (sp. 1 to sp. 4).
stability of the names should be more intensively promoted by the well-trained teuthologists. Alpha-taxonomists are sometimes too cautious in establishing new species, resulting in delay of publication.

Such a too prudent attitude of taxonomists may be caused by: (1) The existence of too many ambiguous names in early times. It is not known if the type materials are still extant or not. (2) The severe demands of modern referees who often require more detailed anatomy and biological data in new species description.

The early unsolved names, of which the type material is proved to be no longer extant by the extensive survey, such as by Sweeney and Roper (1989), should be treated as nomen dubium (as in Toll and Voss, 1989). Otherwise the selection of a neotype is needed (as for Octopus vulgaris, now in progress) to settle the old names. When the discovery of the type specimens fails after serious searches, taxonomists should make the quick decisions to discard the old dubious names. The neotype should be designated, if the old description was clear enough.

The description of new species, from an operational point of view, may not need to be accompanied by too much detailed anatomy, fine structure, and details of ecology and life history data. The precise diagnostic morphological description with clear characters that are usable for separating it from the related species will be enough, and will provide the minimum requirement to promote a faunal inventory (as in Nateewathana and Norman, 1999, a good example). The detailed, intensive biological research on the new species can be published in subsequent separate papers.

Without such a steady and rapid promotion of sound taxonomy of the Tropical West Pacific cephalopods, particularly neritic octopuses, many vernacular names are created by amateur photographers and television media. Such a confusion of names has already happened in the field of opisthobranchs. The grim resolution of taxonomists is now required for settlement of the names of every taxon.

The future taxonomic resolution in respect to cephalopod diversity has been repeatedly proposed by Roper (1983), Lu (1998), Norman and Lu (2000) among others. As they pointed out, it might well be left unsaid that the future study on cephalopod diversity in the Tropical West Pacific needs the financial supports and international collaborations of taxonomists for exchanging expertise, developing the collections, and research as well as training the students.

ACKNOWLEDGEMENTS

I wish to extend my thanks to Dr. C.C. Lu and Dr. C. Chotiyaputta to have given me a chance to make a keynote speech at such a memorable opportunity in CIAC2003. I owe much to Dr. T. Kubodera for his help and advice on various occasions to complete this manuscript.

REFERENCES

Past, present and future studies on cephalopod diversity in tropical West Pacific

Chotiyaputta, C. 1993. A survey on diversity and distribution of juvenile squids in the inner and western Gulf of Thailand. Thai Marine Fisheries Research Bullein. 4: 19–36

Past, present and future studies on cephalopod diversity in tropical West Pacific

